Respuesta :

The time period for the simple the simple pendulum on the earth is

[tex]T_{e} =2\pi  \sqrt{\frac{l}{g_{e} } }[/tex]

The time period for the simple the simple pendulum on the mars is

[tex]T_{m} =2\pi  \sqrt{\frac{l}{g_{m} } }[/tex]

Here, [tex]T_{e}[/tex] and [tex]T_{m}[/tex] are the time periods on the earth and mars respectively and  [tex]g_{e}[/tex]and  [tex]g_{m}[/tex] are the acceleration due to gravity on earth and mars respectively.

We can also write,

[tex]\frac{T_{e}}{T_{m}} =\frac{\sqrt{\frac{l}{g_{e}} } }{\sqrt{\frac{l}{g_{m}} } }[/tex]

or

[tex]\frac{T_{e}}{T_{m}} =\sqrt{\frac{g_{m}}{g_{e}} }[/tex]

Given [tex]T_{e} = 1.70 s[/tex] and [tex]g_{m} = 3.71 m/s^2[/tex]

Therefore,

[tex]\frac{1.70 s}{T_{m} } =\sqrt{\frac{3.71 m/s^2}{9.8 m/s^2} }[/tex]

or

[tex]T_{m}=\frac{1.70}{0.615} = 2.76 s[/tex].

Thus, the time period on the surface of mars is 2.76 sec.

The period of simple pendulum on the surface of Mars is about 2.76 s

[tex]\texttt{ }[/tex]

Further explanation

Simple Harmonic Motion is a motion where the magnitude of acceleration is directly proportional to the magnitude of the displacement but in the opposite direction.

[tex]\texttt{ }[/tex]

The pulled and then released spring is one of the examples of Simple Harmonic Motion. We can use the following formula to find the period of this spring.

[tex]T = 2 \pi\sqrt{\frac{m}{k}}[/tex]

T = Periode of Spring ( second )

m = Load Mass ( kg )

k = Spring Constant ( N / m )

[tex]\texttt{ }[/tex]

The pendulum which moves back and forth is also an example of Simple Harmonic Motion. We can use the following formula to find the period of this pendulum.

[tex]T = 2 \pi\sqrt{\frac{L}{g}}[/tex]

T = Periode of Pendulum ( second )

L = Length of Pendulum ( kg )

g = Gravitational Acceleration ( m/s² )

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

Period of the pendulum on the Earth = T_e = 1.70 s

Gravitational Acceleration of the Earth = g_e = 9.8 m/s²

Gravitational Acceleration of the Mars = g_m = 3.71 m/s²

Unknown:

Period of the pendulum on the Mars = T_m = ?

Solution:

[tex]T_e : T_m = 2 \pi\sqrt{\frac{L}{g_e}} : 2 \pi\sqrt{\frac{L}{g_m}}[/tex]

[tex]T_e : T_m = \sqrt{\frac{1}{g_e}} : \sqrt{\frac{1}{g_m}}[/tex]

[tex]T_m = \sqrt{\frac{g_e}{g_m}} \times T_e[/tex]

[tex]T_m = \sqrt{\frac{9.8}{3.71}} \times 1.70[/tex]

[tex]T_m \approx 2.76 \texttt{ s}[/tex]

[tex]\texttt{ }[/tex]

Learn more

  • Model for Simple Harmonic Motion : https://brainly.com/question/9221526
  • Force of Simple Harmonic Motion : https://brainly.com/question/3323600
  • Example of Simple Harmonic Motion : https://brainly.com/question/11892568

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Simple Harmonic Motion

[tex]\texttt{ }[/tex]

Keywords: Simple , Harmonic , Motion , Pendulum , Spring , Period , Frequency

Ver imagen johanrusli