Respuesta :

we are given

[tex]r(t)=(3t,3cost,3sint)[/tex]

we can compare it with

[tex]r(t)=(x,y,z)[/tex]

we get

[tex]x=3t,y=3cost,z=3sint[/tex]

now, we can use length formula

[tex]L=\int\limits^a_b {\sqrt{(x')^2+(y')^2+(z')^2} } \, dt[/tex]

now, we can find x' , y' and z'

[tex]x'=3,y'=-3sint,z'=3cost[/tex]

now, we can plug values

and we get

[tex]L=\int\limits^-4_4 {\sqrt{(3)^2+(-3sint)^2+(3cost)^2} } \, dt[/tex]

now, we can simplify it

[tex]L=\int\limits^-4_4 {\sqrt{(3)^2+9} } \, dt[/tex]

[tex]L=\int\limits^-4_4 {3\sqrt{2} } \, dt[/tex]

we get

[tex]L=24\sqrt{2}[/tex]............Answer