Respuesta :

Answer: [tex]\frac{16}{3}[/tex]π[tex]a^{3}[/tex] .

Given:

[tex]x^{2}+y^{2}+z^{2} \leq a^{2}, z \geq 0[/tex]

Using Gauss's Law = ∫∫s E ·dS  

= ∫∫∫ div E dV,  

⇒ Divergence (Gauss') Theorem  

= ∫∫∫ (1+1+6) dV  

= 8×(volume of the hemisphere, radius "a")  

= 8× ([tex]\frac{1}{2}[/tex])(4/3)π[tex]a^{3}[/tex]  

= [tex]\frac{16}{3}[/tex]π[tex]a^{3}[/tex] .