Respuesta :

Answer:1002

Step-by-step explanation:

[tex]\Rightarrow \sum_{k=1}^{2004}\left ( \frac{1}{1+\tan ^2\left ( \frac{k\pi }{2\cdot 2005}\right )}\right )[/tex]

and [tex]1+\tan ^2\theta =\sec^2\theta [/tex]

and [tex]\cos \theta =\frac{1}{\sec \theta }[/tex]  

[tex]\Rightarrow \sum_{k=1}^{2004}\left ( \cos^2\frac{k\pi }{2\cdot 2005}\right )[/tex]

as [tex]\cos ^2\theta =\cos ^2(\pi -\theta )[/tex]

Applying this we get

[tex]\Rightarrow \sum_{1}^{1002}\left [ \cos^2\left ( \frac{k\pi }{2\cdot 2005}\right )+\cos^2\left ( \frac{(2005-k)\pi }{2\cdot 2005}\right )\right ][/tex]

every [tex]\theta [/tex]there exist [tex]\pi -\theta[/tex]

such that [tex]\sin^2\theta +\cos^2\theta =1[/tex]

therefore

[tex]\Rightarrow \sum_{1}^{1002}\left [ \cos^2\left ( \frac{k\pi }{2\cdot 2005}\right )+\cos^2\left ( \frac{(2005-k)\pi }{2\cdot 2005}\right )\right ]=1002[/tex]