A person with a remote montain cabin plansto
install her own hydroelectric plant. A nearby stream is 3.00mwide
and 0.500m deep. Water floes at 1.20m/s over the brink of
awaterfall 5.00m high. The manufacturer promises only
25.0%efficiency in converting the PE of the water-Earth system
intoelectric energy. Find the power she can generate.

Respuesta :

Answer:

[tex]P=22050\ W[/tex]

Explanation:

Given:

  • width of the stream, [tex]w=3\ m[/tex]
  • depth of the stream, [tex]d=0.5\ m[/tex]
  • height of the waterfall, [tex]h=5\ m[/tex]
  • velocity of flow, [tex]v=1.2\ m.s^{-1}[/tex]
  • efficiency promised by the manufacturer, [tex]\eta=25\%[/tex]

Now the volume flow rate of the water through the fall:

[tex]\dot V=v\times w\times d[/tex]

[tex]\dot V=1.2\times 3\times 0.5[/tex]

[tex]\dot V=1.8\ m^3.s^{-1}[/tex]

Now we know the density of water is 1000 kilogram per cubic meter.

So, the mass flow rate:

[tex]\dot m=\dot V\times 1000[/tex]

[tex]\dot m=1.8\times 1000[/tex]

[tex]\dot m=1800\ kg.s^{-1}[/tex]

Hence potential energy delivered to the system per second:

[tex]\dot {PE}=\dot m\times g\times h[/tex]

[tex]\dot {PE}=1800\times 9.8\times 5[/tex]

[tex]\dot {PE}=88200\ J.s^{-1}[/tex]

Now the power generated according to efficiency:

[tex]P=\dot{PE}\times \eta[/tex]

[tex]P=88200\times 0.25[/tex]

[tex]P=22050\ W[/tex]