[tex]y = e^x\\\\\displaystyle y = \sum_{k=1}^{\infty}\frac{x^k}{k!}\\\\\displaystyle y= 1+x+\frac{x^2}{2!} + \frac{x^3}{3!}+\ldots\\\\\displaystyle y' = \frac{d}{dx}\left( 1+x+\frac{x^2}{2!} + \frac{x^3}{3!}+\frac{x^4}{4!}+\ldots\right)\\\\[/tex]
[tex]\displaystyle y' = \frac{d}{dx}\left(1\right)+\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(\frac{x^2}{2!}\right) + \frac{d}{dx}\left(\frac{x^3}{3!}\right) + \frac{d}{dx}\left(\frac{x^4}{4!}\right)+\ldots\\\\\displaystyle y' = 0+1+\frac{2x^1}{2*1} + \frac{3x^2}{3*2!} + \frac{4x^3}{4*3!}+\ldots\\\\\displaystyle y' = 1 + x + \frac{x^2}{2!}+ \frac{x^3}{3!}+\ldots\\\\\displaystyle y' = \sum_{k=1}^{\infty}\frac{x^k}{k!}\\\\\displaystyle y' = e^{x}\\\\[/tex]
This shows that [tex]y' = y[/tex] is true when [tex]y = e^x[/tex]
-----------------------