Given the points A(0, 0), B(e, f), C(0, e) and D(f, 0), determine if line segments AB and CD are parallel, perpendicular or neither.

Respuesta :

Answer:

Perpendicular

Step-by-step explanation:

Calculate the slopes m of the segments using the slope formula.

m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]

Parallel lines have equal slopes

The product of the slopes of perpendicular lines equals - 1

(x₁, y₁ ) = A(0, 0) and (x₂, y₂ ) = B(e, f)

[tex]m_{AB}[/tex] = [tex]\frac{f-0}{e-0}[/tex] = [tex]\frac{f}{e}[/tex]

Repeat with (x₁, y₁ ) = C(0, e) and (x₂, y₂ ) = D(f, 0)

[tex]m_{CD}[/tex] = [tex]\frac{0-e}{f-0}[/tex] = - [tex]\frac{e}{f}[/tex]

Thus AB and CD are perpendicular since [tex]\frac{f}{e}[/tex] × - [tex]\frac{e}{f}[/tex] = - 1