(1 point) An open box will be made by cutting a square from each corner of a 10 ft by 16 ft piece of cardboard and then folding up the sides. What size square should be cut from each corner in order to produce a box of maximum volume

Respuesta :

Answer:

2 feet

Step-by-step explanation:

We are given that

Length of piece,l=10ft

Width of piece,b=16ft

Let x be the side of square

Length of box=10-2x

Width of  box=16-2x

Height of box=x

Volume of box=lbh

[tex]V=(10-2x)(16-2x)x[/tex]

[tex]V=x(160-52x+4x^2)=160x-52x^2+4x^3[/tex]

Differentiate w.r.t x

[tex]V'(x)=160-104x+12x^2[/tex]

[tex]V'(x)=0[/tex]

[tex]160-104x+12x^2=0[/tex]

[tex]3x^2-26x+40=0[/tex]

[tex]3x^2-20x-6x+40=0[/tex]

[tex]x(3x-20)-2(3x-20)=0[/tex]

[tex](3x-20)(x-2)=0[/tex]

[tex]x=\frac{20}{3},x=2[/tex]

[tex]x\neq \frac{20}{3}[/tex]

Because when substitute the value x=20/3

Then, the width of box is negative which is not possible.

[tex]V''(x)=-104+24 x[/tex]

Substitute x=2

[tex]V''(2)=-104+24(2)=-56<0[/tex]

Hence, the volume is maximum at x=2

Side of square=2 feet

Hence, square of side 2 feet should be cut from each corner in order to produce a box of maximum volume.