A rectangular box with a square base is to be constructed from material that costs $9 per ft2 for the bottom, $4 per ft2 for the top, and $3 per ft2 for the sides. Find the box of greatest volume that can be constructed for $193. Round your answer to 2 decimals.

Respuesta :

Answer:

V = 23.85 ft³

Step-by-step explanation:

The dimension of the square base = x ft by x ft

Height of box = y

Volume of the box, [tex]V = x^{2} y[/tex]

Cost of top = $4 * [tex]x^{2}[/tex]

Cost of the bottom =  $9 * [tex]x^{2}[/tex]

Cost of the sides = $3 * 4xy

Total cost = 4x² + 9x² + 12xy

Total cost = 13x² + 12xy

Total cost = $193

193 = 13x² + 12xy

[tex]y = \frac{193 - 13x^{2} }{12x}[/tex]

But volume, V = x²y

V = [tex]\frac{x^{2} (193 - 13x^{2}) }{12x}[/tex]

V = [tex]\frac{x (193 - 13x^{2}) }{12}[/tex]...................(1)

At maximum value, V' = 0

0 = [tex]\frac{193 - 39x^{2} }{12}[/tex]

[tex]39x^{2} = 193\\x^{2} = \frac{193}{39}[/tex]

x = 2.23

Put the value of x into (1)

[tex]V = \frac{2.23 (193 - 13*2.23^{2}) }{12}[/tex]

V = 23.85 ft³