What is the solution to the inequality below?
x² > 25

Given inequality:
[tex]x^{2}>25[/tex]
To find:
The solution of the inequality:
Solution:
[tex]x^{2}>25[/tex]
For [tex]u^{n}>a,[/tex] if n is even then [tex]u<-\sqrt[n]{a}[/tex] or [tex]u>\sqrt[n]{a}[/tex].
[tex]x<-\sqrt{25}[/tex] or [tex]x>\sqrt{25}[/tex]
25 can be written as 5².
[tex]x<-\sqrt{5^2}[/tex] or [tex]x>\sqrt{5^2}[/tex]
Square and square root get canceled.
[tex]x<-5[/tex] or [tex]x>5[/tex]
Interchange the inequality.
[tex]x>5[/tex] or [tex]x<-5[/tex]
The solution is x > 5 or x < -5.