Respuesta :

Look at the attached picture

Hope this will help u...

Ver imagen TheAnimeGirl

The factored form of each equations are [tex](4x - 1)^{2}[/tex] , [tex](x + 5)(x - 6)[/tex] , [tex](3x + 7)(3x - 7)[/tex] and  [tex](3x - 1)(x + 6)[/tex]

Equation in factored form -

A polynomial equation in a complex form can be expressed in the factored form by multiplication of two terms of polynomial in a binomial system. For example, [tex]x^{2} - y^{2}[/tex] can be expressed in factor form as [tex](x + y)(x - y)[/tex].

How to solve each equations in the question in factored form ?

Taking one by one problem respectively -

  • [tex]16x^{2} - 8x + 1[/tex] = [tex]16x^{2} - 4x - 4x + 1[/tex]

                            = [tex]4x(4x - 1) -1(4x - 1)[/tex]

                            =  [tex](4x - 1)^{2}[/tex]

  • [tex]x^{2} - x - 30[/tex]  =  [tex]x^{2} - 6x + 5x - 30[/tex]

                          =  [tex]x(x - 6) + 5(x - 6)[/tex]

                          =  [tex](x + 5)(x - 6)[/tex]

  • [tex]9x^{2} - 49[/tex]  =  [tex](3x)^{2} - 7^{2}[/tex]

                      =  [tex](3x + 7)(3x - 7)[/tex]

  • [tex]3x^{2} + 17x - 6[/tex]  = [tex]3x^{2} + 18x - x - 6[/tex]

                             = [tex]3x(x + 6) - 1(x + 6)[/tex]

                             = [tex](3x - 1)(x + 6)[/tex]

To learn more about factored expression, refer -

https://brainly.com/question/12788888

#SPJ2