A water tower is a familiar sight in many towns. The purpose of such a tower is to provide storage capacity and to provide sufficient pressure in the pipes that deliver the water to customers. The drawing shows a spherical reservoir that contains 7.41 x 105 kg of water when full. The reservoir is vented to the atmosphere at the top. For a full reservoir, find the gauge pressure that the water has at the faucet in (a) house A and (b) house B. Ignore the diameter of the delivery pipes.

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

The gauge pressure that water has at the House A  [tex]P_A = 257020.68 Pa[/tex]

The gauge pressure that water has at the House B  [tex]P_B = 188454 \ Pa[/tex]

Explanation:

From the question we are told that

    The mass of water when full is  [tex]m_f = 7.41* 10^{5} kg[/tex]

     

Generally the volume of water in this tank is mathematically represented as

              [tex]V = \frac{m }{\rho}[/tex]

Where  [tex]\rho[/tex] is the density of water with a value of with a value of [tex]\rho = 1000 kg /m^3[/tex]

   substituting values

                  [tex]V = \frac{7.41 *10^5}{10^3}[/tex]

                  [tex]V = 741 m^3[/tex]

This volume is the volume of a sphere since the tank is spherical so

            [tex]V = \frac{4 \pi ^3}{3}[/tex]

  making r the subject of the formula

           [tex]r =\sqrt[3]{ \frac{741 *3 }{4\pi} }[/tex]              

        [tex]r = 5.6134 m[/tex]

Now we can use this parameter to obtain the diameter

  So

        [tex]d = 2 * r[/tex]

substituting values

        [tex]d = 2 * 5.6134[/tex]

        [tex]d = 11.23m[/tex]

The pressure  the water has at  faucet in House A is mathematically evaluated as

        [tex]P_A = \rho g h_A[/tex]

This height is obtained as follows

                       [tex]h_A = d+ 15[/tex]

The value 15 is gotten from the diagram

  so

          [tex]h_A = 15 + 11.23[/tex]

          [tex]h_A = 26.22 m[/tex]

Now substituting values

         [tex]P_A = 26.23 * 9.8 * 1000[/tex]

         [tex]P_A = 257020.68 Pa[/tex]

      The pressure  the water has at  faucet in House B is mathematically evaluated as

        [tex]P_B = \rho g h_B[/tex]

This height is obtained as follows

                       [tex]h_B = d+ 15[/tex]

The value 15 is gotten from the diagram

  so

          [tex]h_B = d + 15 -h[/tex]

substituting values

         [tex]h_B =11.23 + 15 -7[/tex]

          [tex]h_A = 19.23 m[/tex]

Now substituting values

         [tex]P_B = 19.23 * 9.8 * 1000[/tex]

         [tex]P_B = 188454 \ Pa[/tex]

     

     

Ver imagen okpalawalter8