Answer:
[tex]14.2-2.03\frac{6.4}{\sqrt{35}}=12.004[/tex]
[tex]14.2+2.03\frac{6.4}{\sqrt{35}}=16.396[/tex]
We are 95% confidence that the true mean for the delay time is between (12.004 and 16.396)
Step-by-step explanation:
Information given
[tex]\bar X=14.2[/tex] represent the sample mean for the delay time
[tex]\mu[/tex] population mean
s=6.4 represent the sample standard deviation
n=35 represent the sample size
Confidence interval
The confidence interval for the true parameter of interest is given by:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
The degrees of freedom, given by:
[tex]df=n-1=35-1=34[/tex]
The Confidence level is 0.95 or 95%,and the significance is [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and the critical value for this case is [tex]t_{\alpha/2}=2.03[/tex]
And replacing we got:
[tex]14.2-2.03\frac{6.4}{\sqrt{35}}=12.004[/tex]
[tex]14.2+2.03\frac{6.4}{\sqrt{35}}=16.396[/tex]
We are 95% confidence that the true mean for the delay time is between (12.004 and 16.396)