In ΔABC, ∠B measures 35° and the values of a and b are 19 and 11, respectively. Find the remaining measurements of the triangle, and round your answers to the nearest tenth. ∠A = 82.2°,∠C = 62.8°, c = 17.1 ∠A = 82.2°, ∠C = 62.8°, c = 12.4 ∠A = 22.5°, ∠C = 25.5°, c = 12.4 ∠A = 22.5°, ∠C = 25.5°, c = 17.1

Respuesta :

Answer:

a)  ∠A = 82.2° , ∠C = 62.8° , c =   17.01

Step-by-step explanation:

Explanation:-

Step(i):-

Given data ∠B measures 35° and the values of a and b are 19 and 11

∠B = 35° and sides a = 19 and b = 11

By using sine rule

[tex]\frac{a}{sin A} = \frac{b}{sin B} = \frac{c}{Sin C} = 2 R[/tex]

now we will use

[tex]\frac{a}{sin A} = \frac{b}{sin B}[/tex]

[tex]\frac{19}{sin A} = \frac{11}{sin 35}[/tex]

cross multiplication , we get

[tex]\frac{19 X sin 35}{11} = sinA[/tex]

sin A = 0.990

A = sin⁻¹( 0.990) = 82.2°

∠A = 82.2°

Step(ii):-

we know that ∠A +∠B +∠C = 180°

                         ∠C = 180° - ∠A -∠B

                          ∠C = 180° -82.2°-35°

                          ∠C = 62.8°

Step(iii):-

we will use formula

[tex]\frac{b}{sin B} = \frac{c}{Sin C}[/tex]

[tex]\frac{11}{sin 35} = \frac{c}{Sin 62.8}[/tex]

[tex]\frac{11 X sin (62.8)}{sin 35} = C[/tex]

c =   17.01

Final answer:-

∠A = 82.2° , ∠C = 62.8° , c =   17.01