Respuesta :

Answer:

[tex]x = -57[/tex]

Step-by-step explanation:

-Solve for the value of x :

[tex]\frac{x}{9} - \frac{x+2}{3} = 12[/tex]

-Multiply both sides by [tex]9[/tex] and the least common multiple of [tex]9[/tex] is [tex]3[/tex] :

[tex]9\times \frac{x}{9} - \frac{x+2}{3} = 12 \times 9[/tex]

[tex]x - 3 (x + 2) = 108[/tex]

-Use Distributive Property :

[tex]x - 3 (x + 2) = 108[/tex]

[tex]x - 3x - 6 = 108[/tex]

-Combine both [tex]x[/tex] and [tex]-3x[/tex] :

[tex]x - 3x - 6 = 108[/tex]

[tex]-2x - 6 = 108[/tex]

-Add both sides by [tex]6[/tex] :

[tex]-2x - 6 + 6 = 108 + 6[/tex]

[tex]-2x = 114[/tex]

-Divide both sides by [tex]-2x[/tex] :

[tex]\frac{-2x}{-2} = \frac{114}{-2}[/tex]

[tex]x = -57[/tex]

So, the value of x is [tex]-57[/tex].

Answer:

[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{x = 57}}}}}[/tex]

Step-by-step explanation:

[tex] \sf{ \frac{x}{9} - \frac{x + 2}{3} = 12}[/tex]

Take the L.C.M of 9 and 3

To do so, First of all find the prime factors of each numbers.

9 = 3 × 3 × 1

3 = 3 × 1

Take out the common prime factors i.e 3 and 1

Also take out the other remaining prime factor : 3

Multiply those all prime factors and obtain L.C.M

= 3 × 3 × 1 = 9

L.C.M of 9 and 3 = 9

[tex] \longrightarrow{ \sf{ \frac{x - 3(x + 2)}{9} = 12}}[/tex]

Distribute 3 through the parentheses

[tex] \longrightarrow{ \sf{ \frac{x - 3x - 6}{9} = 12}}[/tex]

Collect like terms

[tex] \longrightarrow{ \sf{ \frac{ - 2x - 6}{9} = 12}}[/tex]

Do cross multiplication

[tex] \longrightarrow{ \sf{ - 2x - 6 = 12 \times 9}}[/tex]

Multiply the numbers: 12 and 9

[tex] \longrightarrow{ \sf{ - 2x - 6 = 108}}[/tex]

Move 6 to right hand side and change it's sign

[tex] \longrightarrow{ \sf{ - 2x = 108 + 6}}[/tex]

Add the numbers: 108 and 6

[tex] \longrightarrow{ \sf{ - 2x = 114}}[/tex]

Divide both sides by -2

[tex] \longrightarrow{ \sf{ \frac{ - 2x}{ - 2} = \frac{114}{ - 2} }}[/tex]

Calculate

[tex] \longrightarrow{ \sf{x = - 57}}[/tex]

Hope I helped!

Best regards! :D