Respuesta :
[tex] \frac{7}{9} \times (8 \frac{3}{7} + 5 \frac{11}{14}) = \\ [/tex]
[tex] \frac{7}{9} \times (8 \frac{6}{14} + 5 \frac{11}{14} ) = \\ [/tex]
[tex] \frac{7}{9} \times (13 \frac{6 + 11}{14}) = \\ [/tex]
[tex] \frac{7}{9} \times (13 \frac{17}{14}) = \\ [/tex]
[tex] \frac{7}{9} \times (14 \frac{3}{14}) = \\ [/tex]
[tex] \frac{7}{9} \times ( \frac{14 \times 3 + 3}{14}) = \\ [/tex]
[tex] \frac{7}{9} \times ( \frac{42 + 3}{14}) = \\ [/tex]
[tex] \frac{7}{9} \times ( \frac{45}{14}) = \frac{7 \times 45}{9 \times 14} = \frac{5}{2} \\ [/tex]
_________________________________
And we're done.
Thanks for watching buddy good luck.
♥️♥️♥️♥️♥️
Answer:
[tex]\displaystyle \frac{199}{18}[/tex]
Step-by-step explanation:
Fraction Operations
Before attempting to operate with the given fractions, we need to express all of them in the form a/b, because the last 2 fractions are in mixed form.
[tex]\displaystyle 8\frac{3}{7}=8+\frac{3}{7}=\frac{8*7+3}{7}=\frac{59}{7}[/tex]
[tex]\displaystyle 5\frac{11}{14}=5+\frac{11}{14}=\frac{5*14+11}{14}=\frac{81}{14}[/tex]
Now for the sum of the last two fractions:
[tex]\displaystyle \frac{59}{7}+\frac{81}{14}[/tex]
Make both denominators equal by multiplying by 2 both parts of the first fraction:
[tex]\displaystyle \frac{59}{7}+\frac{81}{14}=\frac{118}{14}+\frac{81}{14}[/tex]
[tex]\displaystyle =\frac{118+81}{14}=\frac{199}{14}[/tex]
Now multiply by 7/9:
[tex]\displaystyle \frac{199}{14}*\frac{7}{9}=\frac{199}{18}[/tex]