Answer: The specific heat of the Al is [tex]1.008J/g^0C[/tex].
Explanation:
[tex]Q_{absorbed}=Q_{released}[/tex]
As we know that,
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
[tex]m_1\times c\times (T_{final}-T_1)=-[m_2\times c\times (T_{final}-T_2)][/tex]
where,
[tex]m_1[/tex] = mass of water = 87.4 g
[tex]m_2[/tex] = mass of Al metal = 6.7797 g
[tex]T_{final}[/tex] = final temperature = [tex]28.67^0C[/tex]
[tex]T_1[/tex] = temperature of water = [tex]25.37^oC[/tex]
[tex]T_2[/tex] = temperature of Al metal = [tex]205.24^oC[/tex]
[tex]c_1[/tex] = specific heat of water = [tex]4.184J/g^0C[/tex]
[tex]c_2[/tex] = specific heat of Al metal = ?
Now put all the given values in equation (1), we get
[tex]m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)][/tex]
[tex]87.4\times 4.184\times (28.67-25.37)^0C=-[6.7797\times c_2\times (28.67-205.24)][/tex]
[tex]c_2=1.008J/g^0C[/tex]
Therefore, the specific heat of the Al is [tex]1.008J/g^0C[/tex].