7 freshmen, 9 sophomores, 8 juniors, and 8 seniors are eligible to be on a committee. In how many ways can a dance committee of 14 students be chosen? In how many ways can a dance committee be chosen if it is to consist of 2 freshmen, 3 sophomores, 4 juniors, and 5 seniors.

Respuesta :

Answer:

[tex]Number\ of\ Committee = 6914880\ ways[/tex]

Step-by-step explanation:

Given

Total:

[tex]Freshmen= 7\\ Sophomores = 8\\ Juniors = 8\\ Seniors = 8[/tex]

Selection

[tex]Freshmen= 2\\ Sophomores = 3\\ Juniors = 4\\ Seniors = 5[/tex]

Required

Determine the number of selection

To do this, we make use of combination formula:

[tex]^nC_r = \frac{n!}{(n-r)!r!}[/tex]

For Freshmen, we have:

[tex]n = 7; r = 2[/tex]

[tex]^7C_2 = \frac{7!}{(7-2)!2!}[/tex]

[tex]^7C_2 = \frac{7!}{5!2!}[/tex]

[tex]^7C_2 = \frac{7 * 6 * 5!}{5! * 2 * 1}[/tex]

[tex]^7C_2 = \frac{7 * 6}{2}[/tex]

[tex]^7C_2 = \frac{42}{2}[/tex]

[tex]^7C_2 = 21[/tex]

For Sophomores, we have:

[tex]n =9;r=3[/tex]

[tex]^9C_3 = \frac{9!}{(9-3)!3!}[/tex]

[tex]^9C_3 = \frac{9!}{6!3!}[/tex]

[tex]^9C_3 = \frac{9 * 8 * 7 * 6!}{6! * 3 * 2 * 1}[/tex]

[tex]^9C_3 = \frac{9 * 8 * 7 }{6}[/tex]

[tex]^9C_3 = \frac{504}{6}[/tex]

[tex]^9C_3 = 84[/tex]

For Juniors, we have:

[tex]n = 8; r = 4[/tex]

[tex]^8C_4 = \frac{8!}{(8-4)!4!}[/tex]

[tex]^8C_4 = \frac{8!}{4!4!}[/tex]

[tex]^8C_4 = \frac{8 * 7 *6 * 5 * 4!}{4!*4 * 3 * 2 * 1}[/tex]

[tex]^8C_4 = \frac{8 * 7 *6 * 5}{4 * 3 * 2 * 1}[/tex]

[tex]^8C_4 = \frac{1680}{24}[/tex]

[tex]^8C_4 = 70[/tex]

For Seniors

[tex]n = 8; r = 5[/tex]

[tex]^8C_5 = \frac{8!}{(8-5)!5!}[/tex]

[tex]^8C_5 = \frac{8!}{3!5!}[/tex]

[tex]^8C_5 = \frac{8 * 7 *6 * 5!}{5! * 3 * 2 * 1}[/tex]

[tex]^8C_5 = \frac{8 * 7 *6}{3 * 2 * 1}[/tex]

[tex]^8C_5 = \frac{8 * 7}{1}[/tex]

[tex]^8C_5 = 56[/tex]

[tex]Number\ of\ Committee = Freshmen\ and\ Sophomores\ and\ Juniors\ and\ Seniors[/tex]

and implies *, so we have:

[tex]Number\ of\ Committee = 21 * 84 * 70 * 56[/tex]

[tex]Number\ of\ Committee = 6914880\ ways[/tex]