Respuesta :

Answer:

factoring the term [tex]x^4-1[/tex] we get [tex]\mathbf{(x^2+1)(x-1)(x+1}[/tex]

Step-by-step explanation:

We need to factor the term [tex]x^4-1[/tex]

We know that [tex]a^2-b^2=(a-b)(a+b)[/tex]

We can write [tex]x^4 \ as \ (x^2)^2[/tex]

Simplifying:

[tex]x^4-1\\=(x^2)^2-1\\=(x^2-1)(x^2+1)\\[/tex]

Now, again using formula [tex]a^2-b^2=(a-b)(a+b)[/tex]

[tex]=(x^2+1)((x)^2-1)\\=(x^2+1)(x-1)(x+1)[/tex]

So, factoring the term [tex]x^4-1[/tex] we get [tex]\mathbf{(x^2+1)(x-1)(x+1}[/tex]