Fred's art project involves a series of parallel stripes. If he starts by drawing the line 8x+2y=7, select all the equations that could represent lines that could also be drawn for his art project.

Respuesta :

Options:

A. [tex]y-1 = 4(x + 8)[/tex]

B. [tex]y = -4x + 15[/tex]

C. [tex]16x + 4y = 9[/tex]

D. [tex]y=-4x[/tex]

E. [tex]4x + 2y = 3[/tex]

Answer:

B. [tex]y = -4x + 15[/tex]

C. [tex]16x + 4y = 9[/tex]

D. [tex]y=-4x[/tex]

Step-by-step explanation:

Given

[tex]8x + 2y = 7[/tex]

Required

Select all equations that could be used.

Equation that could be used in place of [tex]8x + 2y = 7[/tex] must have the same slope.

Calculating the slope of [tex]8x + 2y = 7[/tex]

Make y the subject

[tex]2y = 7 - 8x[/tex]

[tex]y = \frac{7}{2} - \frac{8x}{2}[/tex]

[tex]y = \frac{7}{2} - 4x[/tex]

[tex]y = - 4x + \frac{7}{2}[/tex]

Using y = mx + b

Where

[tex]m = slope[/tex]

The slope is -4

Option A.

[tex]y-1 = 4(x + 8)[/tex]

Open bracket

[tex]y - 1=4x + 32[/tex]

Collect Like Terms

[tex]y - 4x = 32 + 1[/tex]

[tex]y - 4x = 33[/tex]

Make y the subject

[tex]y = 4x + 33[/tex]

The slope of this line is 4;

Hence, it can not be used.

Option  B.

[tex]y = -4x + 15[/tex]

The slope of this line is -4;

Hence, it can be used.

Option  C.

[tex]16x + 4y = 9[/tex]

Solve for4y

[tex]4y=9 - 16x[/tex]

Solve for y

[tex]\frac{4y}{4} =\frac{9}{4} - \frac{16x}{4}[/tex]

[tex]y =\frac{9}{4} - 4x[/tex]

[tex]y = - 4x + \frac{9}{4}[/tex]

The slope of this line is -4;

Hence, it can be used.

D. [tex]y=-4x[/tex]

The slope of this line is -4;

Hence, it can be used.

E. [tex]4x + 2y = 3[/tex]

Solve for 2y

[tex]2y = 3 - 4x[/tex]

Solve for y

[tex]\frac{2y}{2} = \frac{3}{2} - \frac{4x}{2}[/tex]

[tex]y = \frac{3}{2} - 2x[/tex]

The slope of this line is -2;

Hence, it can not be used.

From the calculations above, equations B, C and D are equivalent