Answer:
36 ft³/min
Step-by-step explanation:
Given that:
Let assume that length of the cube = m
Then;
m = 2 feet &;
[tex]\dfrac{dm}{dt}= 3 \ ft/ min[/tex]
The volume (V) = m³
By differentiating with respect to t, we get
[tex]\dfrac{dV}{dt} = 3m^2 \dfrac{dm}{dt}[/tex]
[tex]\dfrac{dV}{dt} = 3(2)^2 \times 3[/tex]
[tex]\dfrac{dV}{dt} = 12 \times 3[/tex]
= 36 ft³/min