Respuesta :

Answer:

Proved

Step-by-step explanation:

Given

FGH and FJH

[tex]GH = JH[/tex]

Required

Prove: FGH ≅ FJH

Let the hypotenuse of both triangles be FG and FJ respectively.

In FGH:

[tex]FG^2 = GH^2 + FH^2[/tex] ---- (1)

In FJH

[tex]FJ^2 = JH^2 + FH^2[/tex]

Substitute GH for JH

[tex]FJ^2 = GH^2 + FH^2[/tex] --- (2)

By comparison: (1) = (2)

i.e.

[tex]FG^2 = FJ^2[/tex]

[tex]GH^2 + FH^2 = GH^2 + FH^2[/tex]

This implies that: FGH ≅ FJH