Respuesta :

Answer:

[tex]\sqrt{128a^{6}b^{13}} = 8 a^{3} b^{6} \sqrt{2b}[/tex]

Step-by-step explanation:

Given

[tex]\sqrt{128a^{6}b^{13}}[/tex]

Required

Solve

[tex]\sqrt{128a^{6}b^{13}}[/tex]

The expression can be split to:

[tex]\sqrt{128a^{6}b^{13}} = \sqrt{128} * \sqrt{a^{6}} * \sqrt{b^{13}}[/tex]

[tex]\sqrt{128a^{6}b^{13}} = \sqrt{64 * 2} * \sqrt{a^{6}} * \sqrt{b^{13}}[/tex]

[tex]\sqrt{128a^{6}b^{13}} = \sqrt{64} * \sqrt{2} * \sqrt{a^{6}} * \sqrt{b^{13}}[/tex]

[tex]\sqrt{128a^{6}b^{13}} = \sqrt{64} * \sqrt{2} * \sqrt{a^{6}} * \sqrt{b^{12 + 1}}[/tex]

[tex]\sqrt{128a^{6}b^{13}} = \sqrt{64} * \sqrt{2} * \sqrt{a^{6}} * \sqrt{b^{12}} * \sqrt{b}[/tex]

So, we have:

[tex]\sqrt{128a^{6}b^{13}} = 8 * \sqrt{2} * a^{6/2} * b^{12/2} * \sqrt{b}[/tex]

[tex]\sqrt{128a^{6}b^{13}} = 8 * \sqrt{2} * a^{3} * b^{6} * \sqrt{b}[/tex]

Rewrite as:

[tex]\sqrt{128a^{6}b^{13}} = 8 * a^{3} * b^{6}* \sqrt{2} * \sqrt{b}[/tex]

[tex]\sqrt{128a^{6}b^{13}} = 8 a^{3} b^{6}* \sqrt{2b}[/tex]

[tex]\sqrt{128a^{6}b^{13}} = 8 a^{3} b^{6} \sqrt{2b}[/tex]