Respuesta :

Given that

(2a+b,11) and (1,a-3b) are equal ordered pair

⇛(2a+b,11) = (1,a-3b)

On comparing both sides then

2a+b = 1 ----------Eqn(1)

11 = a-3b

⇛ a-3b = 11 ------Eqn(2)

⇛ a = 11+3b-------Eqn(3)

On substituting the value of a in Eqn(1) then

⇛ 2(11+3b) + b = 1

⇛(2×11)+(2×3b) + b = 1

⇛ 22 +6b+b = 1

⇛ 22+7b = 1

⇛ 7b = 1-22

⇛ 7b = -21

⇛ b = -21/7

⇛ b = -3

On substituting the value of b in Eqn(3) then

⇛ a = 11+3(-3)

⇛ a = 11-9

a = 2

Therefore, a = -3 and b = 2

Answer:-The value of (a,b) for the given problem is (-3,2).