Respuesta :

Answer:

the correct answer will be 88

Answer:

Area of the shaded region 45.76 cm².

Step-by-step explanation:

Firstly, finding the area of rectangle by substituting the values in the formula :

[tex]{\longrightarrow{\pmb{\sf{A_{(Rectangle)} = l \times b}}}}[/tex]

  • → A = Area
  • → l = length
  • → b = breadth

[tex]\begin{gathered} \qquad{\longrightarrow{\sf{A_{(Rectangle)} = l \times b}}}\\\\\qquad{\longrightarrow{\sf{A_{(Rectangle)} = 12\times 8}}}\\\\\qquad{\longrightarrow{\sf{A_{(Rectangle)} = 96}}}\\\\\qquad{\star{\boxed{\sf{\pink{A_{(Rectangle)} = 96 \: {cm}^{2}}}}}} \end{gathered}[/tex]

Hence, the area of rectangle is 96 cm².

[tex]\rule{200}2[/tex]

Secondly, finding the area of circle by substituting the values in the formula :

[tex]{\longrightarrow{\pmb{\sf{A_{(Circle)} = \pi{r}^{2}}}}}[/tex]

  • → A = Area
  • → π = 3.14
  • → r = radius

[tex]\begin{gathered} \qquad{\longrightarrow{\sf{A_{(Circle)} = \pi{r}^{2}}}} \\ \\ \qquad{\longrightarrow{\sf{A_{(Circle)} = 3.14{(4)}^{2}}}} \\ \\ \qquad{\longrightarrow{\sf{A_{(Circle)} = 3.14{(4\times 4)}}}} \\ \\ \qquad{\longrightarrow{\sf{A_{(Circle)} = 3.14(16)}}} \\ \\ \qquad{\longrightarrow{\sf{A_{(Circle)} = 3.14 \times 16}}} \\ \\ \qquad{\longrightarrow{\sf{A_{(Circle)} \approx 50.24}}} \\ \\ \qquad{\star{\boxed{\sf{\purple{A_{(Circle)} \approx 50.24 \: {cm}^{2}}}}}} \end{gathered}[/tex]

Hence, the area of circle is 50.24 cm².

[tex]\rule{200}2[/tex]

Now, finding the area of shaded region by substituting the values in the formula :

[tex]\longrightarrow{\pmb{\sf{A_{(Shaded)} = A_{(Rectangle)} - A_{(Circle)}}}}[/tex]

  • → A = Area
  • → Rectangle
  • → Circle

[tex]\begin{gathered}{\quad{\longrightarrow{\sf{A_{(Shaded)} = A_{(Rectangle)} - A_{(Circle)}}}}}\\\\{\quad{\longrightarrow{\sf{A_{(Shaded)} = 96 - 50.24}}}}\\\\{\quad{\longrightarrow{\sf{A_{(Shaded)} \approx 45.76}}}}\\\\{\quad{\star{\boxed{\sf{\red{A_{(Shaded)} \approx 45.76 \: {cm}^{2}}}}}}} \end{gathered}[/tex]

Hence, the area of shaded region is 45.76 cm².

[tex]\rule{300}{2.5}[/tex]