How do I complete the square and rewrite the equation?


Complete the square to rewrite the following equation. Identify the center and radius of the circle. You must show all work and calculations to receive credit.


x^2 + 2x + y^2 + 4y = 20

Respuesta :

Answer:

[tex](x+1)^2+(y+2)^2=25[/tex]

Center = (-1, -2)

Radius = 5

Step-by-step explanation:

Given equation:

[tex]x^2+2x+y^2+4y=20[/tex]

Add the square of half the coefficient of the terms in x and y to both sides of the equation:

[tex]\implies x^2+2x+\left(\dfrac{2}{2}\right)^2+y^2+4y+\left(\dfrac{4}{2}\right)^2=20+\left(\dfrac{2}{2}\right)^2+\left(\dfrac{4}{2}\right)^2[/tex]

Simplify:

[tex]\implies x^2+2x+1+y^2+4y+4=20+1+4[/tex]

[tex]\implies x^2+2x+1+y^2+4y+4=25[/tex]

We have now created two perfect square trinomials for each variable on the left side of the equation:

[tex]\implies (x^2+2x+1)+(y^2+4y+4)=25[/tex]

Factor the perfect square trinomials:

[tex]\implies (x+1)^2+(y+2)^2=25[/tex]

[tex]\boxed{\begin{minipage}{4 cm}\underline{Equation of a circle}\\\\$(x-h)^2+(y-k)^2=r^2$\\\\where:\\ \phantom{ww}$\bullet$ $(h, k)$ is the center. \\ \phantom{ww}$\bullet$ $r$ is the radius.\\\end{minipage}}[/tex]

Compare the factored equation with the formula for the equation of a circle to find the center and the radius.

Center

[tex]-h=1 \implies h=-1[/tex]

[tex]-k=2 \implies k=-2[/tex]

Therefore, the center is (-1, -2).

Radius

[tex]r^2=25 \implies r=\sqrt{25}=5[/tex]

Therefore, the radius is 5.