[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\\\
\begin{array}{rllll}
% left side templates
f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}}
\\ \quad \\
y=&{{ A}}({{ B}}x+{{ C}})+{{ D}}
\\ \quad \\
f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}}
\\ \quad \\
f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}}
\\ \quad \\
f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}}
\end{array}[/tex]
[tex]\bf \begin{array}{llll}
% right side info
\bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\
\bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}
\\\\
\bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\
\qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\
\qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\
\end{array}[/tex]
[tex]\bf \begin{array}{llll}
\bullet \textit{ vertical shift by }{{ D}}\\
\qquad if\ {{ D}}\textit{ is negative, downwards}\\\\
\qquad if\ {{ D}}\textit{ is positive, upwards}\\\\
\bullet \textit{ period of }\frac{2\pi }{{{ B}}}
\end{array}[/tex]
now, with that template in mind, let's see this one
a horizontal stretch of 1/3, meaning AB is 3... so... A = 3, and B =1 will do
shift UP of 4 units, meaning D = 4
[tex]\bf y=x^2\implies
\begin{array}{lllll}
y=&1&(1x&+0)^2&+0\\
&\uparrow &\ \uparrow &\ \uparrow &\uparrow \\
&A&B&C&D
\end{array}[/tex]