Respuesta :

Let's simplify step-by-step.2r^2+3s^3r^2+4t^2r^2=2^r2+3s^3+r^2+4t^2+r^2
Combine Like Terms:=2r^2+3s^3+r^2+4t^2+r^2=(3s^3)+(2r^2+r^2+r^2)+(4t^2)=3s^3+4t^2
Answer:= 3s^3 + 4t^2






2r2+3s3-r2+4t2-r2 

Final result : 3s^3 + 4t^2 
 (1): "r^2"   was replaced by   "r^2".  4 more similar replacement(s).
Step by step solution : Step  1  :Equation at the end of step  1  : ((((2•(r^2))+(3•(s^3)))-(r^2))+22t^2)-r^2 
Step  2  :
Equation at the end of step  2  : ((((2•(r^2))+3s^3)-r^2)+22t^2)-r^2 
Step  3  :
Equation at the end of step  3  : (((2r^2 + 3s^3) - r^2) + 22t^2) - r^2 
Step  4  :Trying to factor as a Sum of Cubes :  4.1      Factoring:  3s^3 + 4t^2 

Theory : A sum of two perfect cubes,  a^3 + b^3 can be factored into  :
             (a + b) • (a^2-ab+b^2)
Proof  : (a + b) • (a^2-ab+b^2) =
    a3-a^2b+ab^2+ba^2-b^2a+b3 =
    a^3+(a^2b-ba^2)+(ab^2-b^2a)+b^3=
    a^3+0+0+b^3=
    a^3+b^3


Check :  3  is not a cube !!

Ruling : Binomial can not be factored as the difference of two perfect cubes

Final result : 3s^3 + 4t^2