Respuesta :

The value of B = [tex]\dfrac{2S-NA}{N}[/tex]

Step-by-step explanation:

The given equation,

[tex]S=\dfrac{N}{2}(A+B)[/tex]

To find, the value of B in terms of S, N and A = ?

∴ [tex]S=\dfrac{N}{2}(A+B)[/tex]

By crossmultiplication, we get

⇒ N(A + B) = 2S

⇒ NA + NB = 2S

⇒ NB = 2S  - NA

⇒ B = [tex]\dfrac{2S-NA}{N}[/tex]

The value of B = [tex]\dfrac{2S-NA}{N}[/tex]

Otras preguntas